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A model of transient single-lane traffic flows is proposed, taking into account the basic components used to control road traffic 
(traffic lights and "sleeping policemen"), which is radically different from those traditionally considered in continuum mechanics. 
The model takes into account the main property of traffic flows, namely, the property of self-organisation, and enables the conditions 
required to ensure maximum carrying capacity to be described correctly both qualitatively and quantitatively, as well as the 
occurrence and evolution of "travelling traffic jams" on roads, as well as the effect of road traffic control units. © 2005 Elsevier 
Ltd. All rights reserved. 

Unlike the first mathematical models, which describe traffic flows [1-6] and the corresponding research, 
generalized in the monograph [7], a model of traffic flows was proposed in [8-10] which contains not 
only a continuity equation but also a differential equation of the motion, and takes into account the 
limits on speed and acceleration of the traffic flow, the technical characteristics of the vehicles and the 
features of the response of a driver to a change in the road conditions. According to this model, the 
problem of traffic flow has no direct hydrodynamic analogy. 

Below, developing this model, we take into account additional road conditions, namely, the different 
forward visibility distances for a driver, and the presence on the road of traffic lights and "sleeping 
policemen". 

1. THE MODEL OF THE TRAFFIC FLOW ALONG 
AN ARTERIAL ROAD 

Consider the unidirectional flow of vehicles along a single-lane road. An intersection with other roads 
and the presence of traffic lights will be taken into account by appropriate boundary conditions. We 
will introduce an Euler system of coordinates x along the arterial road in the direction of the traffic 
flow and the time t. 

We will define the mean flow density p(x, t) as the ratio of the area of the traffic lane, occupied by 
the vehicles to the area of the whole section of the traffic lane considered 
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where h is the width of the traffic lane, L is the length of the controlled section of the road, l is the 
mean length of the vehicle, and n is the number of vehicles in the controlled section. Thus, the flow 
density introduced is a dimensionless quantity, which varies from zero to unity. 

0 We will introduce the flow velocity ~(x, t), which can vary from zero "Omax -- the maximum allowed 
speed on the arterial road outside the systems for controlling the traffic. It follows from the definitions 
that the maximum density 9 = I corresponds to the situation when the vehicles are practically up against 
one another ("bumper to bumper"). In this case it is natural to take v = 0, i.e. there is a "traffic jam" 
on the road. 

tPrikl. Mat. Mekh. Vol. 68, No. 6, pp. 1035-1042, 2004. 
0021-8928/S--see front matter. © 2005 Elsevier Ltd. All rights reserved. 
doi: 10.1016/j.jappmathmech.2004.11.014 
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By calling the quantity 
L 

m = ~ p d x  

0 

the "mass", concentrated in a section of length L ,  we can write the change in mass on the arterial road. 
For a continuous flow of vehicles we will have the following equation of continuity 

~p/0t+ ~ ( p v ) l ~ x  = 0 (1.1) 

We will write the equation of the dynamics of traffic flow, more exactly, the equation of the change 
in the mode of motion. The mode of motion of vehicles on the road is defined by the following main 
factors: the response of a driver to a change in the road conditions and the actions which he takes, the 
response of the traffic to the driver's action, and the technical characteristics of the vehicles. In developing 
the model of traffic dynamics we made the following main assumptions. 

1. In view of the fact that it is the average traffic that is being described, and not the motion of each 
vehicle separately, the model operates with the average characteristics of the vehicles, and ignores any 
individual differences in power, inertia, braking distances, etc. 

2. It is assumed that, on average, the response of all drivers to a change in the road conditions is 
adequate, namely, it is assumed that, on seeing a red traffic light or a speed limitation sign, for example, 
that there is a "sleeping policeman" ahead, or a pile-up of vehicles in front, the driver shows down to 
a complete stop or to a permissible speed, and does not continue to accelerate and subsequently have 
to use emergency braking. 

3. It is assumed that all drivers obey the traffic rules, in particular, they do not exceed the maximum 
speed permitted on the road, and maintain a safe distance between the vehicles, depending on the speed. 

The equation of the change in speed can then be written in the form 

d l )  - -  . + 

- a; a = max{-a ,mm{a ,a'}} 
dt  

t Y _ _ V ( P )  - 1~ k Z 0 p  
a' = (Yoao + (1 - 6o)JO)(y)ao( t ,  x + y )dy  ~ z ' a° = ---~p ~x 

0 

(1.2) 

Here a is the acceleration of the traffic flow, a + is the maximum possible acceleration, a- is the emergency 
braking deceleration, and the quantities a + and a- are positive and are defined by the technical 
characteristics of each vehicle. The parameter k > 0 is, as has been shown previously [8-10], the 
propagation velocity of small perturbations ("the velocity of sound") in traffic flow. The parameter "c 
has the meaning of the delay time due to the finiteness of the speed of the driver's reaction to a change 
in the road conditions and the technical characteristics of his vehicle. This parameter corresponds to 
the tendency of the driver to maintain a speed corresponding to the maximum safe speed V(p) for the 
flow density p [8, 10] 

o 
-klnp,  t~<Vma x 

q 0 V ( p  ) t OOax , 1) >- l)ma x 

The speed V(p) is determined from the condition for the car speed v to depend on the flow density 
of p for the conditions of a simple wave, while occurs when the flow starts to spread out from the point 
where P0 = 1 and a0 = 0, taking into account the limitation on the maximum permissible speed (a~ < V°m~x). 
The value of the parameter "c may be different, depending on whether it is necessary to decelerate or 
accelerate in order to reach the maximum safe speed V(9) ,  namely 

"c , g(p) < v 
= 

~-, V(p)_> v 

The remaining parameters in formulae (1.2) have the following meaning: Y = min{Y0, L -x}  is the 
characteristic visibility along the flow, which depends on the weather conditions, c0(y) is the "weight" 
of the state of the flow in front of the vehicle for taking a decision on whether to change the type of 
driving, which can be defined, for example, as follows: 
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0 

and ~0 is a dimensionless parameter (0 ___ ~0 < 1), characterizing the "weight" of the local situation 
compared with the situation at a certain distance in front of the vehicle. 

Hence, in the expression for the acceleration of the traffic flow (1.2) the first term corresponds to 
the effect of the local situation, the second term corresponds to the effect of the situation in front at 
a distance less than or equal to the characteristic visibility Y, while the third corresponds to the adjustment 
in the speed of the vehicle to the maximum safe one for the actual flow density p. 

An estimate of the value of the propagation velocity of small perturbations k was made previously 
in [8, 10], starting from the following considerations. Suppose, starting the motion from a state of rest 
(aJ = 0, p = 1) and accelerating to a velocity a)°m~x, the flow reaches a maximum permissible density, P,, 
which guarantees that the motion is safe. We mean by a safe density that for which the distance between 
the vehicles is no less than the braking distance X(v). Then, 

o -1 x(uOm~)/l) p ,  = (l+X(V°max)ll) -), k = l)maxln (1+ 

0 = 80 km/h the braking distance of a VAZ type care is 45 m, which, for a mean length of the When ~rnax 
car (taking into account the minimum distance between stopped cars) 1 = 5 m gives a propagation velocity 
of weak perturbations k = 35 km/h. For such a value of a3max the maximum possible safe flow density 
is p , =  0.1. The maximum accelerations for cars of this class are a + = 1.63 m/s ~ and a- = 5.5 m/s 2. 

The "velocity of sound" k, estimated in this way, agrees well with experimental data [3, 4]. 
Hence, to describe the dynamics of traffic flow along a single-lane highway, from Eqs (1.1) and (1.2) 

we obtain a system of two quasi-linear partial differential equations in divergent form 

_ a(pv 2) 
ap a(pv) o, a(pv)+ - pa 
at ~ ax at ax 

The acceleration a is given by the last three formulae of (1.2). 
We will formulate the boundary conditions at the ends of the part of the arterial road 0 < x < L. Two 

versions of the boundary conditions are possible at the beginning of the flow where x = 0: 
1. when there is no "jam", the flow density and the maximum safe speed for the given density is 

specified: 

p(0, t) = P0, o(0, t) = V(p0) 

2. under conditions of a travelling or fixed "jam", adjoining the entrance part of the highwayx = 0, 
we impose the condition that the density gradient is equal to zero, while the speed is equal to the 
maximum safe speed for the given density: 

ap/axlx=0 = 0, v(0, t) = v(p)  

The presence or absence of a "travelling jam", close to the left boundary of the calculated region 
(x = 0), is determined after calculating the next time step according to the following criterion: if 

0P/0X[x=0 >0  and P>P0 

then there is a "travelling jam". 
At the exit of the flow, whenx = L, we impose the "free exit" condition 

Op/Ox = O, Ov/Ox = 0 

We will take as the initial conditions the fact that on a part of length %, measured from the entrance 
(x = 0), the arterial road is occupied by a flow of vehicles of density P0, moving at a speed V(po), and 
when x0 < x < L the road is free of vehicles (P = 0, v = 0). 
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2. M O D E L S  OF SYSTEMS F O R  C O N T R O L L I N G  ROAD T R A F F I C  

We will consider two versions of the traffic control, characteristic for city roads: traffic lights and 
so-called "sleeping policemen". 

Traffic lights. The main parameters of the operation of traffic lights are the duration of the signals: 
the green light tg, the yellow light ty and the red light tr respectively. We propose the following algorithm 
to model the operation of traffic lights. 

1. At the instant of switching from the green light to the yellow light we calculate the distance 

0 2 
X r = (l)max) /(2a~)" 

where ar is the regular braking deceleration, which is less than the emergency braking value a-. Vehicles 
which are a distance less than xr from the traffic lights are unable to stop before the traffic lights with 
a standard braking deceleration of a ,  and hence they cross on the yellow light, which corresponds to 
the rules of traffic motion. 

2. While the yellow light is operating we will assume that the maximum speed is 

  .ax(Xt) o 
= 1)maxtys/ ty 

where ty s is the time which has elapsed since the yellow light showed. Then xl is a point which is shifted 
towards the traffic light in accordance with the relation 

X l = L 1 - X r t y s / t y  

where LI is the coordinate of the point where the traffic control system is situated (in this case, the 
traffic lights). As a result of this, at the instant when the red light shows vehicles stop at the traffic lights. 

3. At the instant when the red light is switched to a green light the maximum permitted speed of 
crossing the traffic lights will be x)°~x, as at the remaining points of the section of road considered. 

"Sleeping policemen".  The system of limiting the speed of traffic flow, usually called "sleeping 
policemen", is modelled by specifying that the maximum speed ~3max at the point where the "sleeping 

0 policemen" is situated is considerably less than for the main part of the road - a~ma x. In this paper we 
consider the case of two "sleeping policemen" at a distance d from the one another, which is the situation 
most often encountered in practice. The point where the first "sleeping policeman" is situated is 
x = L1. Then the maximum permitted speed along the section of road considered 0 ___ x < L is specified 
as follows: 

Omax = IDP ' x~{Ll'Ll+d} 
Irma×, x ~ [0, L I / { L  v L 1 + d }  

where a~p < V°ax , and the parameter Vp (the maximum crossing speed) of a "sleeping policeman" is 
one of the fundamental parameters of the model. 

3. RESULTS OF N U M E R I C A L  C A L C U L A T I O N S  

The above problems were solved numerically by the TVD method with second order of accuracy [11]. 
The number of nodes in the calculation grid was 201. 

We used the following parameters in the calculations: L = 1000 m is the length of the calculated 
region, x0 = 100 m is the length of the section occupied by the moving traffic at the initial instant of 
time t = 0, L1 = 500 m is the point where the traffic control systems are situated (the traffic lights or 
the first "sleeping policeman"), d = 50 m is the distance between two "sleeping 0policemen", 
P0 = 0.1 = 0.5 is the traffic flow density at the entrance to the calculated regionx = 0, "Oma x = 25 m / s  

is the maximum speed on the main part of the road, a~p = 3 m/s is the maximum speed of crossing a 
"sleeping policeman", k = 7.9 m/s is the propagation velocity of small perturbations in the traffic flow, 

+ 2 2 a = 1.5 m/s is the maximum acceleration of the flow, a- = 5 m/s is the maximum (emergency) braking 
deceleration of the flow, ar = 1.5 m/s z is the standard braking deceleration, Yo = 100 m is the characteristic 
forward visibility along the flow, cy 0 = 0.7 is the "weight" of the local situation, x + = 3.3 s, "r- = oo is 
the time taken to adjust to a safe speed, and tg = 40 - 300 s, ty = 5 s and tr = 30 s are the durations of 
the traffic-light signals. 



Mathematical modelling of traffic flows on controlled roads 937 

1.0 

0.5 

I 
J 
I 
J 
! 
! 
I 
J 
I 
J 
! 

1 

0.5 

t ,  S 

50 
- - - - -  57 

80 

t~ S 

92 
105 
130 

. .-- .--- .------~ 

1.0 0 

2:-. . . . . . .  \ 
0.5 x 1.0 

Fig. 1 

1.0 

0.5 

i t ,  S 
I 
I - -  5 6  
I - - -  8 0  
I 1 3 5  
I 
I 
I 

I \, 
] ',, 
| "%.% 

" ~ - ~  ".~.~ 

I ""'~.~ 

I 
I 
I 

i l .  \\m 
;I x , , ~  
:. " , ,  
I 

l~ S 

390 
420 
470 

'1 / 
. l _  / 

0 0.5 x 1.0 0 0.5 x 1.0 

Fig. 2 

Hence, in the calculations we varied the density of the incoming flow P0 (and, of course, its speed) 
and the duration tg for which the green light operates. 

The results of the calculations are presented in Figs 1-4 and in the table. 
In Figs 1 and 2 we show the distributions of the traffic flow density P with respect to the coordinate 

of the calculated region x at different instants of time, indicated on the figures, in the case when the 
flow is controlled by the traffic lights. In this case the working time of the green light tg = 50 s, while 
the initial traffic flow densities are P0 = 0.18 (Fig. 1) and P0 = 0.3 (Fig. 2). The time in Fig. 1 corresponds 
to the following operating cycles and signals of the traffic lights: 50 s - the first cycle, end of the green 
light, 57 s - the first cycle, the yellow light, 80 s - the first cycle, the end of the red light, 92 s - the 
second cycle, the green light, 105 s - the second cycle, the green light, 130 s - the second cycle, and the 
end of the red light. In Fig. 2:56 s - the first cycle, the yellow light, 86 s - the fifth cycle, the end of the 
red light, 135 s - the second cycle, the end of the green light, 390 s - the fif cycle, the end of the green 
light, 426 s - the fifth cycle, the end of the red light, 476 s - the sixth cycle, the end of the green light. 
As can be seen from these graphs, when P0 = 0.18 a "travelling jam" is not formed (Fig. 1), while in 
the case when P0 = 0.3 a travelling jam is formed, which moves in the opposite direction to the traffic 
flow, the speed of the vehicles in which is reduced considerably. 

The results of an investigation of how the limiting initial flow density p;, for which a travelling jam 
is not formed, depends on the duration of the green light tg, are presented in the table. The remaining 
initial parameters are fixed. The dependence of p;  on tg is described quite well by the following formula 

p~ = aln(btg) (3.1) 
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where a and b are parameters which depend on many factors, including the duration of the red signal 
tr. For the initial data considered a = 0.054 and b = 0.87. The difference A between the limiting densities 
9~, calculated from formula (3.1), and the values obtained by numerical modelling, are also shown in 
the table. The root mean square deviation is equal to 0.0116, while the maximum difference in the 
densities A = 0.0216. 

tg, S 40 60 80 100 150 200 250 300 

p~ 0,18 0.21 0.23 0,23 0.27 0.29 0.31 0.31 

A × 103 11,68 3.56 -0.89 11.16 -6.95 -11.41 -19.36 -9.52 

In Figs 3 and 4 we show profiles of the traffic flow density P with respect to the coordinate of the 
calculated region x for the case when the flow is controlled by two "sleeping policemen" at different 
successive time intervals, indicated on the graphs, for an initial flow density P0 = 0.1 (Fig. 3) and 
P0 = 0.3 (Fig. 4). 

The case when P0 = 0.1 corresponds to free motion of the traffic flow through the zone in which the 
flow is controlled by the "sleeping policeman", while when P0 = 0.3 a travelling jam is formed, which 
moves in the opposite direction to the flow. It can be seen that when the flow of vehicles traverses the 
section with the "sleeping policemen", two sections of increased density are formed (Figs 3 and 4), which, 
when 9o < 0.2 does not impede the free passage of the flow through the obstacles. If P0 > 0.2, there is 
a travelling jam before the "sleeping policemen", the occurrence of which leads to a situation in which, 
over the course of time, the density p at the entrance to the calculated region x = 0 begins to exceed 
the initial density P0 and the motion before the obstacle zone becomes very slow (Fig. 4). 

4. C O N C L U S I O N  

Our calculations enable us to conclude that, at low densities of the incoming traffic flow, "sleeping 
policemen" enable the speed to be controlled in the required way along the sections where they are 
installed, without interfering with the free motion of the traffic. However, when the density of the 
incoming traffic flow increases, they produce a "travelling jam", which moves in the opposite direction 
to the traffic flow, which, in the final analysis, leads to congestion on the road. Control of the traffic 
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using traffic lights enables one, by choosing the optimum mode of operation (the duration of the signals 
of different colour), to increase the throughout considerably. 

The model takes into account the main property of traffic flows, namely, self-organization, and enables 
the conditions required to ensure maximum throughput, the occurrence and evolution of "travelling 
jams" on roads, and the effect of the main components of traffic control, to be correctly described both 
qualitatively and quantitatively. 

This research was supported financially by the Government of Moscow (GA-91/02) and by the 
Government of the Region of Brussels (RIB-2002//001). 
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